
J Math Chem (2010) 47:692–708
DOI 10.1007/s10910-009-9595-4

ORIGINAL PAPER

Many-orbital probabilities and their entropy/
information descriptors in orbital communication
theory of the chemical bond

Roman F. Nalewajski

Received: 8 July 2009 / Accepted: 17 August 2009 / Published online: 16 September 2009
© Springer Science+Business Media, LLC 2009

Abstract The joint/conditional “probability” measures of simultaneous many-
orbital events in chemical bonds, which involve several basis functions, are derived
within standard SCF LCAO MO description of molecular systems. These general-
ized projection/overlap quantities satisfy the symmetry properties and sum rules of
the ordinary probabilities, but can exhibit negative values. The associated informa-
tion-theoretic descriptors of chemical bonds for a general case of several (dependent)
orbital probability schemes are examined. The many-orbital theory extends the range
of applications of the orbital communication theory to many classical issues in the
theory of molecular electronic structure and chemical reactivity. Such probabilities
are required in several molecular scenarios, e.g., bimolecular and catalytic reactiv-
ity, directing influence of ligands/substituents, the three-centre bonds, etc., which are
also identified. Such an approach implies the effect of the IT-ionic activation of the
chemisorbed reactants in catalytic systems.

Keywords Bond descriptors · Catalytic systems · Chemical bond theory · Entropy
covalency · Information ionicity · Information theory · Many-orbital probabilities ·
Molecular information systems · Orbital communications in molecules

1 Introduction

The information theory (IT) [1–8] has recently been shown to provide efficient tools
for tackling diverse problems in the theory of molecular electronic structure [9–41].

Throughout the paper P denotes a scalar quantity, P stands for a row-vector, and P represents a
square/rectangular matrix.
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For example, the IT-definition of atoms-in-molecules (AIM) has been reexamined
[9–13] and the information content of electronic distributions in molecules as well
as the entropic origins of the chemical bond have been approached anew [9–18].
Moreover, the Shannon theory of communication [4–6] has been applied to probe
the bonding patterns in molecules within the communication theory of the chemical
bond (CTCB) [9,19–36] and thermodynamic-like description of the electronic “gas”
in molecular systems has been explored [9,37–39]. The CTCB bonding patterns in
both the ground and excited electron configurations have been tackled and the valence-
state promotion of atoms due to the orbital hybridization has been characterized. This
development has widely explored the use of the average communication-noise (delo-
calization, indeterminacy) and information-flow (localization, determinacy) indices as
novel descriptors of the overall IT covalency and ionicity, respectively, of all chemical
bonds in the molecular system as a whole, as well as the internal bonds present in
its constituent subsystems and the external, inter-fragment bonds. The electron local-
ization function [40] has been shown to explore the non-additive part of the Fisher
information [1–3] in the molecular orbital (MO) resolution [9,41], while a similar
approach in the atomic orbital (AO) representation generates the so called contra-
gradience (CG) descriptors of chemical bonds, which are related to the matrix repre-
sentation of the electronic kinetic-energy [42–44]. The molecular quantum mechanics
and IT are related through the Fisher (locality) measure of information [1–3], which
represents the gradient content of the system wave-function, thus being proportional
to the average kinetic energy of electrons. The stationary Schrödinger equation indeed
marks the optimum probability amplitude of the associated Fisher-information princi-
ple including the additional constraint of the fixed value of the system potential energy
[42,45–50].

The key concept of CTCB is the molecular information system, which can be con-
structed at alternative levels of resolving the electron probabilities into the underlying
elementary “events” determining the channel inputs a = {ai } and outputs b = {b j },
of finding an electron on the basis-set orbital, AIM, molecular fragment, etc. They can
be generated within both the local and condensed descriptions of electronic proba-
bilities in a molecule. Such molecular information networks describe the probability/
information propagation in a molecule and can be characterized by the standard quan-
tities developed in IT for real communication devices. Due to electron delocalization
throughout the network of chemical bonds in a molecule the transmission of “signals”
about the electron allocations to these (mutually exclusive) events becomes randomly
disturbed, thus exhibiting the communication “noise”. Indeed, an electron initially
attributed to the given atom/orbital in the channel “input” a (molecular or promolecu-
lar) can be later found with a non-zero probability at several locations in the molecular
“output” b. This feature of the electron delocalization is embodied in the conditional
probabilities of outputs given inputs, P(b | a) = {P(b j | ai )}, which define the
molecular communication network.

In the orbital-communication theory (OCT) [33–36] these conditional probabilities
are defined in the basis-function resolution. They follow from the quantum-mechanical
superposition principle [51] supplemented by the “physical” projection onto the sub-
space of the system occupied MO, which determine the molecular pattern of chemical
bonds. In this formulation of CTCB the off-diagonal orbital communications have
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been shown to be proportional to the corresponding Wiberg [52] or related quadratic
indices of the chemical bond [53–62]. It is the main goal of the present work to extend
this two-orbital development into the simulaneous many-orbital events in molecular
chemical bonds, in order to generate the entropy/information descriptors involving
several (dependent) probability distributions. The molecular scenarios, in which such
IT indices are required will be identified and briefly discussed.

2 Molecular information channels in atomic orbital resolution

In MO theory the network of chemical bonds is determined by the occupied MO’s in
the system ground-state. Let us assume, for simplicity, the closed-shell (cs) electron
configuration of N = 2n electronic system, in the standard Restricted Hartree–Fock
(RHF) description, which involves the n lowest (doubly occupied, orthonormal) MO.
In the LCAO MO approach they are generated as linear combinations (LC) of the
appropriate (orthogonalized) basis functions χ = (χ1, χ2, . . . , χm) = {χi }, 〈χ |χ〉 =
{δi, j } ≡ I, e.g., Löwdin’s symmetrically orthogonalized Atomic Orbitals (AO), ϕ =
(ϕ1, ϕ2, . . . , ϕn) = {ϕs} = χC, where the rectangular matrix C = {Ci,s} = 〈χ |ϕ〉
groups the relevant LCAO MO expansion coefficients, to be determined using the
familiar self-consistent field (SCF) approach.

The system electron density ρ(r), and hence also the one-electron probability dis-
tribution p(r) = ρ(r)/N , the shape-factor of ρ, are determined by the first-order
density matrix γ in the AO representation, also called the charge-and-bond-order
(CBO) matrix,

ρ(r) = 2ϕ(r)ϕ†(r) = χ(r)[2CC†]χ†(r) ≡ χ(r)γχ†(r) = N p(r). (1)

It represents the projection operator P̂ϕ = |ϕ〉〈ϕ| = ∑
s |ϕs〉〈ϕs | ≡ ∑

s P̂s onto the
subspace of all doubly occupied MO,

γ = 2〈χ |ϕ〉〈ϕ|χ〉 = 2CC† ≡ 2〈χ |P̂ϕ |χ〉
= {γi, j = 2〈χi |P̂ϕ |χ j 〉 ≡ 2〈i |P̂ϕ | j〉} (2)

thus satisfying the appropriate idempotency relation:

(γ)2 = 4〈χ |P̂ϕ |χ〉〈χ |P̂ϕ |χ〉 = 4〈χ |P̂2
ϕ |χ〉 = 4〈χ |P̂ϕ |χ〉 = 2γ. (3)

The CBO matrix reflects the promoted, valence-state of AO in the molecule, with the
diagonal elements measuring the effective electron occupations of the basis functions,
{Ni = γi,i = Npi }, with the probabilities of AO being occupied in the molecule
p = {pi = γi,i/N },∑i pi = 1.

The molecular information system in the (condensed) orbital resolution involves the
AO events χ in its input a = {χi } and output b = {χ j }. It represents the effective com-
munication promotion of these basis functions in the molecule via the probability/
information scattering described by the conditional probabilities of the AO-outputs
given the AO-inputs, identified by the row (input) and column (output) indices,
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respectively. In this one-electron description the AO→AO communication network is
determined by the conditional probabilities of the output AO-events, given the input
AO-events,

P(b|a) = {P(χ j |χi ) ≡ P( j |i) = P(i ∧ j)/pi },
∑

j

P( j |i) = 1, (4)

where the associated joint probabilities of simultaneously observing two AO in the
system chemical bonds P(a ∧ b) = {P(i ∧ j)} satisfy the usual partial and total
normalization relations:

∑

i

P(i ∧ j) = p j ,
∑

j

P(i ∧ j) = pi ,
∑

i

∑

j

P(i ∧ j) = 1. (5)

These conditional probabilities define the probability scattering in the AO-promotion
channel of the molecule, in which the “signals” of the molecular/promolecular elec-
tron allocations to basis functions are transmitted between the AO inputs and outputs.
Such information system constitutes the basis of OCT of the chemical bond.

As argued elsewhere [34], by using the generalized superposition principle of quan-
tum mechanics [51], this matrix of (physical) conditional probabilities involves the
squares of corresponding elements of the CBO matrix:

P(b|a) = {P( j |i) = Ni |〈i |P̂ϕ | j〉|2 = (2γi,i )
−1γi, jγ j,i ≥ 0}, (6)

where the closed-shell normalization constant Ni = (2γi,i )
−1 follows directly from

Eq. (3)(for the open-shell generalization see [35,36]). These probabilities explore the
dependencies between AO resulting from their participation in the system occupied
MO, i.e., their involvement in the entire network of chemical bonds in a molecule.
This molecular channel can be probed using both the promolecular (p0 = {p0

i }) and
molecular (p) input probabilities, in order to extract the IT-multiplicities of the ionic
and covalent bond components, respectively.

The off-diagonal conditional probability of j th AO-output given i th AO-input is
thus proportional to the squared element of the CBO matrix linking the two AO, γ j,i =
γi, j , thus being also proportional to the corresponding AO contribution Mi, j = γ 2

i, j
to the Wiberg [52] index of the overall chemical bond order between two atoms A and
B in the molecule,

M (A, B) =
∑

i∈A

∑

j∈B
Mi, j , (7)

or to related, generalized quadratic descriptors of molecular bond-multiplicities
[53–62].

It can be straightforwardly verified using the idempotency relation of Eq. (3) that
the associated probability matrix of the joint two-orbital events,
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P(a∧b) = {P(i∧ j) = P(i∧ j |ϕ) = |A(i∧ j |ϕ)|2 = pi P( j |i)
= (2N )−1γi, jγ j,i = (2N )−1〈i |P̂ϕ | j〉〈 j |P̂ϕ |i〉 ≥ 0},

(8)

indeed satisfies the normalization conditions of Eq. (5), e.g.,

∑

i

P(i ∧ j) = (2N )−1
∑

i

γ j,iγi, j = (2N )−12γ j, j = p j . (9)

It also follows from Eq. (8) that the amplitude A(i ∧ j |ϕ) of this two-orbital proba-
bility, conditional on the subspace ϕ of the occupied MO, is proportional to the matrix

element γi, j = 2
〈
i
∣
∣P̂ϕ

∣
∣ j
〉
= 2
(〈

i
∣
∣P̂ϕ

) (
P̂ϕ

∣
∣ j
〉)

= 2
〈
iϕ
∣
∣ jϕ
〉
, measuring the scalar product

of projections of the two AO onto the subspace ϕ.
In OCT the entropy/information indices of the covalent/ionic components of all

chemical bonds in the given molecular system represent the complementary descrip-
tors of the average communication noise and the amount of information-flow in the
molecular information channel. The molecular input p(a) ≡ p generates the same
distribution in the output of the molecular channel [see Eq. (5)],

pP(b|a) =
{
∑

i

pi P( j |i) ≡
∑

i

P(i ∧ j) = p j

}

= p, (10)

thus identifying p as the stationary probability vector for the molecular ground state,
while the promolecular input p(a0)≡ p0 in general produces different output proba-
bility p0P(b|a) = p∗(a0) = {p∗

j } = p∗ 	= p.
The purely molecular communication channel, with p defining its input signal, is

devoid of any reference (history) of the chemical bond formation and generates the
average-noise index of the molecular IT bond-covalency, measured by the conditional-
entropy of the system outputs given inputs:

S(b|a) = −
∑

i

∑

j

P(i ∧ j)log[P(i ∧ j)/pi ]

=
∑

i

pi

⎡

⎣−
∑

j

P( j |i)logP( j |i)
⎤

⎦ ≡
∑

i

pi Si ≡ S[p|p] ≡ S. (11)

This average-noise descriptor thus expresses the difference between the Shannon
entropies of the molecular one- and two-orbital probabilities,

S = H [P(a ∧ b)]−H [p];
H [p] = −

∑

i

pi logpi ≡ H(a) ≡ H(b),

H [P(a ∧ b)] = −
∑

i

∑

j

P(i ∧ j)log P(i ∧ j) ≡ H(a ∧ b). (12)
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Hence, for the independent input and output events, when Pind.(a ∧ b) = {pi p j },
H [Pind.(a ∧ b)] = 2H [p], and hence Sind. = H [p].

The molecular channel with p0 determining its input “signal” probability refers to
the initial-state in the bond-formation process, describing the promolecule—a collec-
tion of non-bonded (free atoms) in their respective positions in a molecule. In other
words, it corresponds to the ground-state (fractional) occupations of the AO contrib-
uted by the system constituent free atoms, before their mixing into MO. This input
signal gives rise to the average information-flow descriptor of the system IT bond-ion-
icity, given by the mutual-information in the channel inputs and outputs:

I (a0:b) =
∑

i

∑

j

P(i ∧ j)log[P(i ∧ j)/(p j p0
i )]

=
∑

i

pi

⎧
⎨

⎩

∑

j

P( j |i)log[P(i | j)/p0
i ]
⎫
⎬

⎭

≡
∑

i

pi Ii = H(b) + H(a0) − H(a ∧ b) = H [p0] − S ≡ I [p0:p] ≡ I.

(13)

This amount of information reflects the fraction of the initial (promolecular) informa-
tion content H [p0], which has not been dissipated as noise in the molecular commu-
nication system. In particular, for the molecular input, when p0 = p,

I (a : b)=
∑

i

∑

j

P(i, j)log[P(i, j)/(p j pi )] = H [p] − S ≡ I [p : p]. (14)

Hence, for the independent input and output events I ind.(a :b) = 0.
Finally, the sum of these two bond components,

N (a0; b) = S + I ≡ N [p0; p] ≡ N = H [p0]
=
∑

i

pi (Si + Ii ) ≡
∑

i

piNi , (15a)

where Ni = −logp0
i stands for the self-information in the promolecular AO-input

event χi , measures the overall IT bond-multiplicity of all bonds in the molecular sys-
tem under consideration. It is seen to be conserved at the promolecular-entropy level,
which marks the initial information content of AO probabilities. Alternatively, for the
molecular input, when p(a) = p, this quantity preserves the Shannon entropy of the
molecular input probabilities:

N (a :b) = S(b|a) + I (a :b) = H(a) = H [p]. (15b)

In the qualitative diagrams of the upper part of Fig. 1, referring to two dependent
probability schemes, the common (overlap) area of the associated entropy circles cor-
responds to the mutual information in both distributions, I (a:b), while the remaining
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Fig. 1 A qualitative diagram showing a variety of the conditional-entropy and mutual-information
quantities characterizing two (upper part) and three (lower part) dependent probability schemes{

X =
[

x
pX(x)

]}

= A, B, C, combining events x = {xi } = (a, b, c) and their probabilities pX(x) =
{pX(xi )} [6]; here, the individual circles H(A) = H [p(a)] = H(a), H(B) = H [p(b)] = H(b) and
H(C) = H [p(c)] = H(c) represent the Shannon entropies of the separate probability distributions,
H(AB) = H(a ∧ b), H(B | A) = S(b|a), I (A :B) = I (a : b), etc

parts of individual circles represent the corresponding conditional entropies S(b|a) or
S(a|b). The latter measure the residual uncertainty about events in one set, when one
has the full knowledge of the occurrence of the events in the other set of events. Accord-
ingly, the area enclosed by the envelope of these two overlapping circles represents
the entropy in the joint distribution of these two sets of outcomes:
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H(a ∧ b) = H(a) + H(b) − I (a : b) = H(a) + S(b|a) = H(b) + S(a|b). (16)

3 Many-orbital extension

To determine the entropy/information quantities of three dependent probability dis-
tributions, which are schematically shown in diagrams of the lower part of Fig. 1, the
joint probabilities of the occurrence of the simultaneous three-orbital events in the
molecular chemical bond system are required, which define the associated conditional
probabilities,

P(a ∧ b ∧ c)

= {P(i ∧ j ∧ k) = pk P(i ∧ j |k) = p j P(i ∧ k| j) = pi P( j ∧ k|i)}. (17)

These quantities must be symmetrical with respect to exchanges of AO labels. This
can be assured by the appropriate symmetrization,

P(i ∧ j ∧ k) = 1

3!
∑

p

P[p(i, j, k) ≡ (i p, jp, kp)], (18)

where the summation is over all permutations of (i, j, k): p = p(i, j, k) = (i p, jp, kp).
These joint and conditional probabilities have to satisfy the relevant partial and total
normalization conditions formulated in the following sum-rules:

∑

i

∑

j

P(i ∧ j |k) =
∑

i

∑

k

P(i ∧ k| j) =
∑

j

∑

k

P( j ∧ k|i) = 1,

∑

i

P(i ∧ j ∧ k) = P( j ∧ k),

∑

j

P(i ∧ j ∧ k) = P(i ∧ k),

∑

k

P(i ∧ j ∧ k) = P(i ∧ j), etc.

(19)

It follows from Eq. (8) that the amplitude A(i ∧ j |ϕ) of the joint two-orbital
probability is proportional to the relevant CBO matrix element coupling the two
orbitals. It reflects the product of the AO projections onto the occupied subspace
of MO: A(i ∧ j |ϕ) ∝ γi, j = 2〈iϕ | jϕ〉. One also observes that the probability
P(i ∧ j |ϕ) = |A(i ∧ j |ϕ)|2 can be expressed as the expectation value in the projected
state |iϕ〉 of the projection operator P̂( j |ϕ) onto | jϕ〉:

P(i ∧ j
∣
∣ϕ) = (2N )−1γi, jγ j,i = (2/N )〈iϕ | jϕ〉〈 jϕ |iϕ〉 = (2/N )

〈
iϕ
∣
∣P̂( j |ϕ)

∣
∣iϕ
〉
≥ 0.

(20a)
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This expression is equivalent to the associated permutation-symmetrized form:

P(i ∧ j |ϕ) = (2N )−1γi, j γ j,i = (2/N )
1

2!
∑

p

〈
iϕp
∣
∣P̂ jϕp

∣
∣iϕp
〉

= (2/N )

{
1

2!
[
〈
iϕ | jϕ

〉 〈
jϕ
∣
∣iϕ
〉+ 〈 jϕ

∣
∣iϕ
〉 〈

iϕ
∣
∣ jϕ
〉
]}

= 1

N

(〈
iϕ |P̂( j |ϕ)|iϕ

〉
+
〈

jϕ
∣
∣P̂(i |ϕ)

∣
∣ jϕ
〉)

. (20b)

In what follows we present an extension of this projection technique, which covers
the simultaneous many-AO events in the bond system of the molecule.

Consider first the simultaneous three-orbital events in the molecular framework
of chemical bonds. A straightforward extension of the projection principle of the
preceding equation gives:

P(i ∧ j ∧ k) = P(i ∧ j ∧ k
∣
∣ϕ) = (2/N )

1

3!
∑

p

〈
iϕp
∣
∣P̂ jϕp

P̂kϕ
p

∣
∣iϕp
〉

≡ (2/N )
1

3!
∑

p

〈
iϕp
∣
∣P̂ϕ

jpkp

∣
∣iϕp
〉

= [(γi, j γ j,k γk,i + γ j,k γk,i γi, j ) + (γi,k γk, j γ j,i + γk, j γ j,i γi,k)

+(γk, j γ j,i γi,k + γ j,i γi,k γk, j )]/(24N )

= (γi, j γ j,k γk,i + γi,k γk, j γ j,i + γk, j γ j,i γi,k)/(12N )

= γi, j γ j,k γk,i/(4N ) = (2/N )〈i |P̂ϕ | j〉〈 j |P̂ϕ |k〉〈k|P̂ϕ |i〉, (21)

where we have recognized the symmetrical character of γ: γ = γT . These probability-
related quantities define the associated three-dimensional matrix P(a ∧ b ∧ c) =
{P(i ∧ j ∧ k)}. One can directly verify the normalizations of Eq. (19) by using the
idempotency relation of Eq. (3), e.g.,

∑

i

P(i ∧ j ∧ k) = (12N )−1

[(
∑

i

γk,i γi, j

)

γ j,k +
(
∑

i

γ j,i γi,k

)

γk, j

+γk, j

(
∑

i

γ j,i γi,k

)]

= [(2N )−1γk, j γ j,k] = P( j ∧ k). (22)

It should be emphasized, however, that these three-AO projection quantities can
exhibit negative values, e.g., when in the bond system two pairs of orbitals are effec-
tively bonded, say γi, j > 0 and γ j,k > 0, while the third pair remains effectively
anti-bonded: γk,i < 0. Therefore, since the genuine probabilities have to be posi-
tive, these bond-conditioned quantities can at best be regarded as generalized prob-
ability indices, which satisfy all symmetry properties and sum rules expected of the
true probability measures. As such they are expected to generate adequate average
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entropy/information indices of molecular channels, when used in standard IT expres-
sions, capable of reflecting diverse couplings between chemical bonds in molecular
fragments, reactants, etc. Alternatively, they can be regarded as relative probability
measures, in reference to the system promolecule, with the negative three-orbital
displacements then signifying that an accumulation of joint probabilities in the bonded
pairs of AO is associated with its lowering in the anti-bonded pair of orbitals.

This property of the projected many-orbital “probabilities”, conditional on the mole-
cular chemical bonds, reflects the mutual competition between AO for the system
valence electrons, with the higher “probability” of the bonded pairs of AO being asso-
ciated with the lower probability in anti-bonded interaction. This is in perfect agree-
ment with chemical intuition and the elementary quantum-mechanical description of
the chemical bond. We resort to these generalized “probability” quantities in order to
reflect the familiar interference phenomena exhibited by the probability amplitudes
(wave functions) of quantum mechanics.

The “probabilities” of Eq. (21) in turn generate the associated “probability” indices
of the 2-AO bond events conditional on the third basis function [see Eq. (17)]:

P(a ∧ b|c) = {P(i ∧ j |k) = P(i ∧ j ∧ k)/pk = (4γk,k)
−1γk,iγi, jγ j,k},

P(b ∧ c|a) = {P( j ∧ k|i) = P(i ∧ j ∧ k)/pi = (4γi,i )
−1γi, jγ j,kγk,i }, (23)

P(a ∧ c|b) = {P(i ∧ k| j) = P(i ∧ j ∧ k)/p j = (4γ j, j )
−1γ j,kγk,iγi, j }.

These expressions also represent natural extensions of their two-AO analogs of Eq. (6)
and satisfy the relevant normalization constraints of Eq. (19), e.g.,

∑

i

∑

j

P(i ∧ j |k) = (4γk,k)
−1
∑

j

(
∑

i

γk,iγi, j

)

γ j,k

= (2γk,k)
−1

⎛

⎝
∑

j

γk, jγ j,k

⎞

⎠ = γk,k/γk,k = 1.

One similarly generates from the first-order reduced density matrix of Eq. (2) the
joint probabilities of the simultaneous four-AO events or the associated AO condi-
tional probabilities of the simultaneous three-AO events in the molecular system of
chemical bonds,

P(a ∧ b ∧ c ∧ d)={P(i ∧ j ∧ k ∧ l)=P(i ∧ j ∧ k ∧ l|ϕ)=pl P(i ∧ j ∧ k|l), etc.},
(24)

for which the relevant normalization relations read:

∑

i

∑

j

∑

k

P(i ∧ j ∧ k|l) = 1,
∑

l

P(i ∧ j ∧ k ∧ l) = P(i ∧ j ∧ k), etc. (25)
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The specific expressions follow from generalizing by induction Eqs. (8) and (21):

P(a ∧ b ∧ c ∧ d) = {P(i ∧ j ∧ k ∧ l) = (2/N )
1

4!
∑

p

〈
iϕp
∣
∣P̂ jϕp

P̂kϕ
p
P̂lϕp

∣
∣iϕp
〉

≡ (2/N )
1

4!
∑

p

〈
iϕp
∣
∣P̂ϕ

jpkpl p

∣
∣iϕp
〉
= (8N )−1γi, j γ j,k γk,l γl,i

= (2/N )〈i |P̂ϕ | j〉〈 j |P̂ϕ |k〉〈k|P̂ϕ |l〉〈l|P̂ϕ |i〉}, (26)

P(a ∧ b ∧ c|d) = {P(i ∧ j ∧ k|l) = P(i ∧ j ∧ k ∧ l)/pl = (8γl,l)
−1γi, jγ j,kγk,lγl,i }.

(27)

The fulfillment of the normalization relations of Eq. (25) is again guaranteed by the
idempotency condition of Eq. (3):

∑

i

∑

j

∑

k

P(i ∧ j ∧ k|l) = (8γl,l)
−1
∑

i

∑

j

(
∑

k

γ j,kγk,l

)

γi, jγl,i

= (4γl,l)
−1
∑

i

⎛

⎝
∑

j

γi, jγ j,l

⎞

⎠ γl,i

= (2γl,l)
−1

(
∑

i

γl,iγi,l

)

= γl,l/γl,l = 1, (28)

∑

l

P(i ∧ j ∧ k ∧ l) = (8N )−1

(
∑

l

γk,lγl,i

)

γi, jγ j,k

= (4N )−1γk,iγi, jγ j,k = P(i ∧ j ∧ k). (29)

Clearly, this development can be straightforwardly extended to cover a general case
of the n-orbital distributions P(a1 ∧ a2 ∧ · · · ∧ an) and P(a1 ∧ a2 ∧ · · · ∧ an−1|an):

P(a1 ∧ a2 ∧ · · · ∧ an) = {P(i1 ∧ i2 ∧ · · · ∧ in|ϕ) = P(i1 ∧ i2 ∧ · · · ∧ in)

= (2n−1 N )−1γi1,i2γi2,i3 . . . γin−1,in γin ,i1

= (2n−1 N )−1〈i1|P̂ϕ |i2〉〈i2|P̂ϕ |i3〉 · · ·
〈in−1|P̂ϕ |in〉〈in|P̂ϕ |i1〉}, (30)

P(a1 ∧ a2 ∧ · · · ∧ an−1|an) = {P(i1 ∧ i2 ∧ · · · ∧ in−1|in)

= (2n−1γin ,in )
−1γi1,i2γi2,i3 . . . γin−1,in γin ,i1}. (31)

The joint many-orbital events in the familiar one-electron description of the SCF
LCAO MO method require some comment. Obviously, the electron occupying a given
MO ϕs = χCs where Cs = {Ci,s}stands for the s-th column in C = {Cs}, is simul-
taneously observed in all AO which participate in this linear combination, i.e., on all
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basis functions exhibiting a non-vanishing expansion coefficient Ci,s 	= 0. The resul-
tant effect from all occupied MO, which determine the network of chemical bonds in
the molecule, on such simultaneous probabilities of several AO is obtained in Eq. (30)
by applying the projector P̂ϕ onto the occupied subspace of MO, which then links
such physical-projection measures of probabilities to the relevant product of the CBO
matrix elements.

4 Entropic indices of several probability distributions

In the lower part of Fig. 1 a variety of the entropy/information descriptors is depicted
for the case of three dependent (“overlapping”) probability schemes

{

X =
[

x
pX(x)

]}

= (A, B, C), (32)

involving the corresponding AO “events” x = (a, b, c) in the adopted basis set χ =
(χ1, χ2, . . . , χm) or in its alternative subsets and the associated probabilities {pX(x)}.
These IT quantities, some of them negative, now involve the conditional (relative)
entropies with respect to a single or two probability schemes, the mutual informa-
tion contained in two or three probability distributions, and the conditional mutual-
information characteristics of these three probability schemes.

These diagrams demonstrate the additivity of the information quantities in the
three-probability scenario, which may involve two output-signals resulting from a
single input-signal in the molecular channel, or the repeated, two input-signals trans-
mitted in the noisy information channel. For example, the amount of information about
the input signal A obtained by observing two output signals B and C is measured by
the mutual information quantity given by the difference of the Shannon (a priori)
entropy H (A) and the conditional (double a posteriori) entropy in A given B and C,
i.e., the indeterminacy of A relative to B and C,

I (A : BC) =
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log
P(a ∧ b ∧ c)

p(a)P(b ∧ c)

=
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log
P(a|b ∧ c)

p(a)

= H(A) − H(A|BC) ≡ I (a:b ∧ c) = H(a) − S(a|b ∧ c), (33)

where

H(A|BC) ≡ S(a|b ∧ c) = −
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log P(a|b ∧ c). (34)

The mutual information quantity of Eq. (33) can be alternatively expressed in terms
of other entropic quantities shown in the qualitative diagrams of the figure. For exam-
ple, it is seen to measure the sum of elementary amounts of information in the three or
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two probability schemes, and it can be alternatively expressed in terms of the relevant
entropies:

I (A :BC)

= I (A :B|C) + I (A :C|B) + I (A :B :C) ≡ I (a : b|c) + I (a:c|b) + I (a:b:c)

= I (A:B) + I (A:C|B) ≡ I (a:b) + I (a:c|b)

= H(AB) − H(A|BC) − H(B|A) ≡ H(a ∧ b) − S(a|b ∧ c) − S(b|a); (35)

here the mutual information in two probability distributions given the third distribution,

I (A :B|C) = H(A|C) − H(A|BC) =
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c)log
P(a|b ∧ c)

P(a|c)

=
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c)log
P(a ∧ b|c)

P(a|c)P(b|c)

=
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c)log
P(a ∧ b ∧ c)p(c)

P(a ∧ c)P(b ∧ c)
, (36)

and the mutual information in three probability schemes,

I (a : b : c) = I (a : b) − I (a : b|c) = I (a : c) − I (a : c|b) = I (b:c) − I (b:c|a)

=
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log
P(a ∧ b)P(a ∧ c)P(b ∧ c)

p(a)p(b)p(c)P(a ∧ b ∧ c)

= H(a) + H(b) + H(c) − H(a ∧ b) − H(a ∧ c)

−H(b ∧ c) + H(a ∧ b ∧ c), (37)

which may assume negative values, is represented in Fig. 1 by the common area of
the three entropy circles. This expression can be straightforwardly generalized for a
larger number of probability schemes. For example, for the four dependent probability
distributions one finds:

I (a : b : c : d) = I (a : b : c) − I (a : b : c|d) = H(a) + H(b) + H(c) + H(d)

−H(a ∧ b) − H(a ∧ c) − H(a ∧ d)

−H(b ∧ c) − H(b ∧ d) − H(c ∧ d)

+H(a ∧ b ∧ c) + H(a ∧ b ∧ d) + H(a ∧ c ∧ d)

+H(b ∧ c ∧ d) − H(a ∧ b ∧ c ∧ d). (38)

The conditional entropy of Eq. (34),

H(A|BC) ≡ H(A|D) = H(AD) − H(D) = S(a|b ∧ c) ≡ S(a|d), (39)

measures the average noise in the (d ≡ b ∧ c) → a propagation of information in the
underlying communication system. This entropy can be compared (see Fig. 1) with
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the two-scheme relative entropy H(A|B) = H(A) − I (A :B), which measures the
communication noise in the b → a probability scattering [see also Eq. (33)]:

H(A|BC) = −
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log
P(a ∧ b ∧ c)

P(b ∧ c)

= −
∑

a∈a

∑

b∈b

∑

c∈c

P(a ∧ b ∧ c) log
P(a ∧ b ∧ c)p(a)

p(a)P(b ∧ c)

= H(A) − I (A:BC) < H(A|B), (40)

since I (A :D) > I (A :B). Thus, the information propagation from the product events
in the d → a channel results in less noise (IT covalency) compared to that character-
izing the b → a network. Hence, the opposite trend is detected in the complementary
mutual information quantities of Eq. (33):

I (A :BC) = H(A) − H(A|D) > I (A :B) = H(A) − H(A|B). (41)

The product-event scattering thus preserves in D = BC a larger portion of the infor-
mation content of A, compared to that conserved in the scheme B alone, due to the
extra information in C about A given B, as measured by I (A : C|B). In other words,
the d → a probability propagation results in a larger IT-ionic component, compared
to the b → a scattering.

To summarize, the (d = b∧c) → a communications appear less noisy (more deter-
ministic) compared to b → a. Therefore, the a posteriori indeterminacy of A relative
to B, H(A|B), exceeds the double a posteriori entropy H(A|BC), which measures the
indeterminacy of A relative to B and C, while the information about A provided by B
alone, I (A : B), is lower than I (A : BC) by the extra amount of information about A
provided by C, when B is known beforehand,I (A :C|B).

5 Prospective molecular applications

The IT quantities of many-AO probability distributions have recently been used to
characterize the molecular similarity trends in the sequential-cascade approach of
CTCB [27]. The ensemble IT indices generated by several probability distributions
have also emerged within the flexible-input generalization of OCT [36]. In the remain-
ing part of this section we shall briefly examine other potential applications of these
generalized bond descriptors in describing the bonding patterns of molecular/reactive
systems and their fragments. For simplicity, we shall limit out discussion to IT quan-
tities involving three probability schemes in AO resolution (see Fig. 1), for which the
joint probabilities of Eq. (21) are required.

We first observe that a possible molecular scenario invoking such three-scheme
quantities may involve three separate species A, B and C, e.g., two reactants A and B
and a catalyst/surface C, with the corresponding sets of the AO-events (a, b, c) of the
associated probability schemes (A, B, C) then referring to the basis functions provided
by the constituent atoms of each reactant. Alternatively, three molecular fragments can
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be involved. The three-orbital development then enables one to discuss the influence
of one reactant/fragment, say C, on the bond structure (or reactivity) of two remaining
fragments A and B. For example, one could address a natural question: how the elec-
tronic/bonding structure of the catalyst affects the structure/reactivity patterns of two
adsorbed species, and ultimately assess directly the cooperation effects between the
catalyst-adsorbate bonds (A–C, B–C) and the A–B bond linking the two adsorbates.

More specifically, the conditional three-scheme entropy of Eq. (34) (see also Fig. 1),
S(b|a∧c) = H(B|AC) = H(B|A)− I (B :C|A), i.e., the indeterminacy of the molecu-
lar AO-output events b with respect to the double AO-input (product) events a∧c, now
reflects only a part of the overall IT-covalency (noise) in the a → b communications,
measured by the indeterminacy of b with respect to a alone, H(B|A) = S(b|a),
which reflects the overall information loss in the a → b probability scattering. The
mutual-information contribution I (B :C|A), by which H(B|AC) is decreased relative
to H(B|A) and by which I (B : AC) is increased relative to I (A : B), should be now
be attributed to the influence of the catalyst C. In fact, the mutual information in A
and C given B describes the effect of an increased ionic (deterministic) character of
chemical interactions between the chemisorbed reactants A and B, compared to the
AO communications in the separate species.

This ionic “activation” of adsorbates, as a result of forming the partial A–C and
B–C chemical bonds on active sites of the catalytic surface, also manifests the com-
petition effect between these surface bonds and the inter-adsorbate bond A–B in the
catalytic system: the more heavily are the valence electrons of A and B involved in
the chemical bonds with C, the less noisy (more deterministic) are their mutual com-
munications, thus giving rise to less covalent (more ionic) interactions between the
chemisorbed species. The physical adsorption of these reactants should be marked by a
relatively small value of I (B:C|A), since then the dependencies (“overlaps”) between
(B, A) and C, should be small, thus grossly diminishing the ionic activation effect
generated by the presence of the catalyst. Indeed, the surface chemical bond between
a given adsorbate and the catalyst should be strongly felt at the position of the other
adsorbate, and hence the information “coupling” between probability distributions of
the chemisorbed species and that of the catalyst should be relatively strong.

Another molecular scenario, in which the three-scheme entropy/information
descriptors are expected to be useful, is the influence of one reactive site in a molecule
upon another, e.g., in the contexts of subtle reactivity preferences in the donor–
acceptor (DA) reactive systems implied by the hard and soft acids and bases (HSAB)
rule [63–71], and particularly its regional formulation for predicting the regioselectiv-
ity trends in cyclization reactions [72], the maximum complementarity principle [73],
and the bond-length variation rules of Gutmann [74]. Such cooperative interaction
between different sites in a molecule is also responsible for the directing trans/cis
influence of ligands in transition metal complexes and the familiar substituent effect in
aromatic systems. The IT description of the AIM cooperation in the many-centre bonds,
e.g., in boron hydrides or propellanes, is also expected to require the entropy/infor-
mation indices involving several probability schemes.

It should be emphasized that an extraction of the information couplings between
probability propagations in two different molecular fragments requires the four-orbital
“probabilities” in the system as a whole. They in turn generate the associated prob-
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abilities of the AO-communications (conditional two-AO events) in one fragment,
conditional on the AO-communications (conditional two-AO events) in another part
of the molecule. These triply-conditional bond probabilities and their alternative mole-
cular applications will be examined in a separate study [75].
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